Understanding the New Core Architecture of the AMD EPYC 9004 Series Processors

AMD’s announcement of its fourth generation EPYC 9004 Series processors includes major advances in how these chipsets are designed and produced. Part 2 of 4.

  • November 13, 2022 | Author: David Strom
Learn More about this topic

Article Key

AMD’s announcement of its fourth generation EPYC 9004 Series processors includes major advances in how these chipsets are designed and produced for delivering the highest performance levels. These advances involve using a hybrid multi-die architecture.
 
This architecture makes use of two different production processes for cores and I/O pathways. The former makes use of five nanometer dies, while the latter uses six nanometer dies. Each processor package can have up to 12 CPU dies, each with eight 8 cores for a total of 96 cores in the maximum configuration. Each eight-core assembly has its own set of eight 8 dedicated 1 MB L2 caches, and the overall assembly can access a shared 32 MB L3 cache, as shown in the diagram below.
 
32 MB L3 cache image
 
 
 
 
 
 
 
 
 
 
 
In addition to these changes, AMD announced improvements called Zen 4 that involve boosting instructions-per-clock counts and overall clock- speed increases. AMD promises roughly 29 percent faster single-core CPU performance in Zen 4 relative to Zen 3, which were affirmed with Ars Technica’s tests earlier this fall. (Zen 3 chips used the older seven 7 nanometer dies.)
 
 
This configuration provides a great deal of flexibility in how the CPU, memory channels, and I/O paths are arranged. The multi-die setup can reduce fabrication waste and offer better parallel processing support. In addition, AMD EPYC processors are produced in single and dual socket configurations, with the latter offering more I/O pathways and dedicated PCIe generation 5 I/O connections.
 

Related Content