Sponsored by:

Visit AMD Visit Supermicro

Performance Intensive Computing

Capture the full potential of IT

Single-Root I/O Virtualization Delivers a Big Boost for Performance-Intensive Environments

Featured content

Single-Root I/O Virtualization Delivers a Big Boost for Performance-Intensive Environments

Learn More about this topic
  • Applications:
  • Featured Technologies:
  • Featured Companies:
  • Microsoft Azure, VMware, AMD, AWS

Single-root I/O virtualization (SR-IOV) is an interesting standard for performance-intensive computing because it lets a network adapter access resources across a PCIe bus, making it even higher performing. It lets data traffic be routed directly to a particular virtual machine (VM) without interrupting the flow of other traffic across the bus. It does that by bypassing the software switching layer of the virtualization stack, thereby reducing the input/output overhead and improving network performance, stability and reliability. (Get more information about SR-IOV in VMware and Microsoft contexts, for example.)

 

What this means, especially in GPU-based computing, is that each VM has its own dedicated share of the GPU and isn’t forced to compete with other VMs for its share of resources. The feature also helps isolate each VM and is the basic building block for modern VM hyperscale technologies.

 

Tests of SR-IOV have found big benefits, such as lowering processor utilization by 50% and boosting network throughput by up to 30%. This allows for more VMs per host and being able to run heavier workloads on each VM.
 

An excellent server for any virtualization platform is the Supermicro BigTwin® server. With up to 4 servers in just 2U, the Supermicro BigTwin is a versatile and powerful multi-node system that is environmentally friendly due to its shared components. Plus it can handle a wide range of workloads. Learn more about the Supermicro BigTwin model AS -2124BT-HTR.

 

Not a New Idea
 

The technology isn’t new: Scott Lowe wrote about it back in 2009 and SR-IOV was initially supported by Microsoft Windows Server 2012 and with AMD chipsets in 2016. This support has been extended with Azure NVv4 and AWS EC2 G4ad virtual machine instances, which are based on the AMD EPYC™ 7002 CPU and Radeon Pro™ GPU processor families.

The standard is supported by both VMware and Microsoft’s Hyper-V hosts and in various AMD EPYC™ CPU chipsets with MxGPU technology that is built into the actual silicon. This enables sharing a GPU’s power across multiple users or VMs but providing a similar performance level of a discrete processor.

The SR-IOV technology is a big benefit for immersive cloud-based gaming, desktop-as-a-service, machine learning models and 3D rendering applications.

Featured videos


Follow


Related Content

Build an Accelerated Data Center with AMD's Third-Gen EPYC™ CPUs

Featured content

Build an Accelerated Data Center with AMD's Third-Gen EPYC™ CPUs

“AMD EPYC™ processors are now a part of the world’s hyperscale data centers,” said Lisa Su, AMD’s CEO. Meta/Facebook is now building its servers with powerful third-generation AMD EPYC™ CPUs.

Learn More about this topic
  • Applications:
  • Featured Technologies:

If you're making plans to build a high-performance data center, be sure to take a close look at the latest version of AMD's EPYC™ CPU chipsets, which were code-named “Milan X.”

 

Servers that employ AMD’s third-generation EPYC™ CPUs are so powerful that Meta/Facebook is now building its servers with them, using the new single-socket cloud-scale design, which is a part of their Open Compute Project. “AMD EPYC™ processors are now a part of the world’s hyperscale data centers,” said Lisa Su, AMD’s CEO, in the presentation at which she debuted the processors.

 

This latest generation of AMD EPYC CPUs uses an innovative packaging option of 3D stacking of chiplets for high-performance computing applications. Higher density cached memory is stacked on top of the processor to deliver more than 200 times the interconnected density of prior chiplet packaging designs. “It is the most flexible active-on-active silicon technology available in the world,” Su said. “It consumes much less energy and fits into existing CPU sockets, too.” AMD's latest chipsets satisfy the higher demands of cloud computing and electronic circuit design applications.

 

Jason Zander, EVP Microsoft Azure, said that Microsoft's partnership with AMD has let the cloud computing company deliver cloud instances that can run up to 12 times the speed of earlier offerings. “That rivals some supercomputers,” he said. Azure has configured some of the most powerful virtual instances, which are running on the latest AMD EPYC™ processors. They are available from 16 cores up to 120 cores and can share 448 GB of memory and 480 MB of L3 cache among the processors. For deeper information, see this Microsoft blog.

 

Circuit design demands the fastest processors. “The next step for AMD is to deliver more differentiation in value with a focus on performance per core,” said Dan McNamara, general manager of AMD’s Server Business Unit. “In our tests comparing Synopsys VCS chip-design simulation software running on older and newer AMD EPYC™ CPUs, engineers were able to complete 66% more jobs in the same elapsed time, thanks to having a larger L3 cache. This means that more data can be kept closer to the processor for better performance.” These faster product design lifecycles mean faster times to market since designers can save time in the testing process.

Featured videos


Follow


Related Content

Gain Business Insights Faster by Building the Right Infrastructure for Performance-Intensive Computing

Featured content

Gain Business Insights Faster by Building the Right Infrastructure for Performance-Intensive Computing

A white paper from IDC projects a new role for IT leaders in preparing the infrastructure required to properly power performance-intensive computing (PIC) for enterprise workloads, such as data-driven insights, AI/machine learning, big data, modeling and simulation and more. Get the full white paper to learn best practices and avoid pitfalls when implementing performance-intensive computing infrastructure.

Learn More about this topic
  • Applications:

Organizations use data-driven insights to gain competitive advantage over their rivals. Competitive differentiation is often realized through the delivery of new products and services or enhancements to existing products and services. It can also be achieved by streamlining and optimizing business operations. A data-driven business reduces the time needed to realize business advantage by creating an environment conducive to forming business-differentiating insights.

 

As a result, IDC projects that a new chapter in the relationship between IT and the business is about to begin. The new phase will push IT further in a strategic direction, increasing its influence on business outcomes.

 

The trend is expected by IDC to play out over the next four to five years, thrusting IT into a new role implementing a foundational infrastructure designed to foster timely, data-driven insights, at scale. The new infrastructure will be designed to support Performance-Intensive Computing (PIC). Investments in new performance-intensive workloads will be more significant than those used for corporate IT and other business applications.

 

IDC defines performance-intensive computing as the process of performing large-scale, mathematically intensive computations, commonly used in analytics, machine learning and technical computing — and now increasingly required for artificial intelligence and big data and analytics in the commercial space.

 

Performance-intensive computing workloads have evolved at an accelerated pace. An overwhelming majority of respondents in IDC's 2021 IT Enterprise Infrastructure Survey agreed that PIC workloads are important or even critically important to their business.

 

But a general-purpose infrastructure won’t get the job done. Common pitfalls organizations encounter have to do with people, organizational models, business process and access to the technology required to succeed.

 

  • Learn the five areas that organizations need to evaluate when planning to develop their PIC infrastructures.
  • What are the common reasons why PIC projects fail?
  • Find out about performance-intensive solutions from Supermicro and AMD.

 

Get the full IDC white paper: Gaining Deep and Timely Insights with Performance-Intensive Computing Infrastructure.

 

 

 

Featured videos


Follow


Related Content

Offering Distinct Advantages: The AMD Instinct™ MI210 and MI250 Series GPU Accelerators and Supermicro SuperBlades

Featured content

Offering Distinct Advantages: The AMD Instinct™ MI210 and MI250 Series GPU Accelerators and Supermicro SuperBlades

Using six nanometer processes and the CDNA2 graphics dies, AMD has created the third generation of GPU accelerators, which have more than twice the performance of previous GPU processors and deliver 181 teraflops of mixed precision peak computing power.

Learn More about this topic
  • Applications:
  • Featured Technologies:

AMD and Supermicro have made it easier to exploit the most advanced combination of GPU and CPU technologies.

Derek Bouius, a senior product manager at AMD, said “Using six nanometer processes and the CDNA2 graphics dies, we created the third generation of GPU chipsets that have more than twice the performance of previous GPU processors. They deliver 181 teraflops of mixed precision peak computing power.” Called the AMD Instinct MI210™ and AMD Instinct MI250™, they have twice the memory (64 GB) to work with and deliver data at the rate of 1.6 TB/sec. Both these accelerators are packaged as fourth generation PCIe expansion cards and come with direct connectors to Infinity Fabric bridges for faster I/O throughput between GPU cards -- without having their traffic go through the standard PCIe bus.

The Instinct accelerators have immediate benefit for improving performance in the most complex computational applications, such as molecular dynamics, computer-aided engineering, weather and oil and gas modeling.

"We provided optimized containerized applications that are pre-built to support the accelerator and run them out of the box," Bouius said. “It is a very easy lift to go from existing solutions to the AMD accelerator,” he added. It’s accomplished by bringing together AMD’s ROCm™ support libraries and tools with its HIP programming language and device drivers – all of which are open source. They can unlock the GPU performance enhancements to make it easier for software developers to take advantage of its latest processors. AMD offers a catalog of dozens of currently available applications.

Supermicro’s SuperBlade product line combines the new AMD Instinct™ GPU accelerators and AMD EPYC™ processors to deliver higher performance with lower latency for its enterprise customers.

One packaging option is to combine six chassis with 20 blades each, delivering 120 servers that provide a total of more than 3,000 teraflops of combined processing power. This equipment delivers more power efficiency in less space with fewer cables, providing a lower cost of ownership. The blade servers are all hot-pluggable and come with two onboard front-mounted 25 gigabit and two 10 gigabit Ethernet connectors.

“Everything is faster now for running enterprise workloads,” says Shanthi Adloori, senior director of product management for Supermicro. “This is why our Supermicro servers have won the world record in performance from the Standard Performance Evaluation Corp. three years in row.” Another popular design for the SuperBlade is to provide an entire “private cloud in a box” that combines administration and worker nodes and handles deploying a Red Hat Openshift platform to run Kubernetes-based deployments with minimal provisioning.

Related Resources

Featured videos


Follow


Related Content

Supporting Complex Computational Needs with Turnkey Computer Clusters

Featured content

Supporting Complex Computational Needs with Turnkey Computer Clusters

Building the next generation of technical computing equipment has become easier, thanks to the combination of International Computer Concepts’ (ICC) hardware and Define Tech Ltd.’s software and firmware. The result marks a new direction for this market segment, offering a more flexible and useful approach, because it comes with software and applications for running complex engineering simulations.

Learn More about this topic
  • Applications:
  • Featured Technologies:
  • Featured Companies:
  • International Computer Concepts (ICC), Define Tech Ltd.

Building the next generation of technical computing equipment has become easier, thanks to the combination of hardware from International Computer Concepts (ICC) and software and firmware from Define Tech Ltd. You'll find the combined technology delivering solutions like computer-aided engineering, finite element analysis, computational fluid dynamics and geologic data analysis.

 

Such applications depend on huge datasets and complex computational requirements. They typically rely on clusters of multi-core computers, distributed storage and high-speed networking components.

 

The combination is called a turnkey cluster, and it is a good description because it marks a new direction for this market segment. In the past, clustered computers required a great deal of custom assembly, matching the components for throughput and performance, plus developing special firmware and software to take advantage of these benefits. This solution from ICC and Define Tech offers a more flexible and useful approach, because it comes with software and specialized applications that are optimized for running complex engineering simulations, such as Ansys and OpenFOAM.

 

The applications run across a collection of CPU chipsets from AMD, including the latest version of AMD’s EPYC 7003 series of processors that feature high processor core counts, high memory bandwidth and support for high-speed input/output channels in a single chip. These processors feature AMD 3D V-Cache technology and leverage true 3D die stacking for higher L3 cache delivery, which is helpful in these circumstances.

 

“With this latest addition to our HPC cluster suite, we aim to provide our customers an easy-to-use, cost-effective, AI-optimized solution made specifically for simulation-driven engineering workloads,” said ICC’s Director of Development, Alexey Stolyar.

 

For more on this, see ICC's project document as well as Define Tech’s explanatory page.

Featured videos


Follow


Related Content

Queensland Educational Foundation Boosts IT Security with Supermicro Computers Using AMD EPYC™ CPUs

Featured content

Queensland Educational Foundation Boosts IT Security with Supermicro Computers Using AMD EPYC™ CPUs

In South Africa, the Queensland Education Foundation supports 11 different schools for the first 12 primary grades. In an effort to transform the region into a marquee digital environment, it has built a series of fully networked and online classrooms. The network is used both to supply connectivity and as a pedagogical tool to teach students enterprise IT concepts and provide hands-on instruction.

Learn More about this topic
  • Applications:
  • Featured Technologies:

In South Africa, The Queensland Education Foundation's legacy security infrastructure – including dedicated firewalls – was overloaded and operating at close to maximum capacity.

 

The Queensland Education Foundation (QEF) supports 11 different schools for the first 12 primary grades. In an effort to transform the region into a marquee digital environment, it has built a series of fully networked and online classrooms. The network is used both to supply connectivity and as a pedagogical tool to teach students enterprise IT concepts and provide hands-on instruction about their use. Combine that with the increased demands that COVID-19 placed on students to learn from home, the foundation needed to beef up its wide-area network with a higher-capacity fiber ring and better security software.

 

The Foundation's IT team went looking for a single-socket computer solution to simplify support, and conserve power and cooling requirements. This would be used to run the Arista Edge Threat Management software firewall and other security tools to protect their networks and help support student file sharing across the member schools.

 

The IT team experimented with an earlier Supermicro server to test the concept, "but it wasn’t powerful enough," said Johan Bester, one of the IT managers for the QEF. Eventually, the team selected the Supermicro A+ server powered by the AMD EPYC™ 7502 CPU with 128GB of RAM.

 

The server also contains four 10Gbps Ethernet switch ports to boost I/O performance. "With this server, we are able to offer our students a safe environment while encouraging collaborative projects among different schools," he said. The team was attracted to the A+ server because of its price/performance ratio. Plus, its specs met the foundation’s existing service level agreements while delivering increased functionality. The Supermicro system can also be used as a template that can be easily replicated across other South African school networks.

For more detail on Queensland Educational Foundation's adoption of Supermicro and AMD computing technologies, see the QEF case study on the Supermicro website.

Featured videos


Follow


Related Content

Pages